Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(2): 259-271, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702262

RESUMO

During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.


Assuntos
Lipogênese , Receptores de Glucocorticoides , Camundongos , Animais , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Lipogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , Fígado/metabolismo , Jejum
2.
Biochem Biophys Res Commun ; 582: 35-42, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688045

RESUMO

High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.


Assuntos
Aspartato Aminotransferases/genética , Cistationina gama-Liase/genética , Dieta Rica em Proteínas/métodos , Fatores de Transcrição Kruppel-Like/genética , Transcrição Gênica , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Glucose/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA , Transdução de Sinais
3.
iScience ; 24(12): 103446, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34988390

RESUMO

KLF15 is a transcription factor that plays an important role in the activation of gluconeogenesis from amino acids as well as the suppression of lipogenesis from glucose. Here we identified the transcription start site of liver-specific KLF15 transcript and showed that FoxO1/3 transcriptionally regulates Klf15 gene expression by directly binding to the liver-specific Klf15 promoter. To achieve this, we performed a precise in vivo promoter analysis combined with the genome-wide transcription-factor-screening method "TFEL scan", using our original Transcription Factor Expression Library (TFEL), which covers nearly all the transcription factors in the mouse genome. Hepatic Klf15 expression is significantly increased via FoxOs by attenuating insulin signaling. Furthermore, FoxOs elevate the expression levels of amino acid catabolic enzymes and suppress SREBP-1c via KLF15, resulting in accelerated amino acid breakdown and suppressed lipogenesis during fasting. Thus, the FoxO-KLF15 pathway contributes to switching the macronutrient flow in the liver under the control of insulin.

4.
FEBS Lett ; 593(4): 423-432, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30659595

RESUMO

Glucocorticoids have various medical uses but are accompanied by side effects. The glucocorticoid receptor (GR) has been reported to regulate the clock genes, but the underlying mechanisms are incompletely understood. In this study, we focused on the suppressive effect of the GR on the expression of Rev-erbα (Nr1d1), an important component of the clock regulatory circuits. Here we show that the GR suppresses Rev-erbα expression via the formation of a complex with CLOCK and BMAL1, which binds to the E-boxes in the Nr1d1 promoter. In this GR-CLOCK-BMAL1 complex, the GR does not directly bind to DNA, which is referred to as tethering. These findings provide new insights into the role of the GR in the control of circadian rhythm.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Dexametasona/administração & dosagem , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/agonistas
5.
Basic Clin Pharmacol Toxicol ; 123(1): 72-77, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29430839

RESUMO

Sleep disorders are frequently reported in autistic patients. Evidences suggest that increased oxidative stress and reduced antioxidants may play a major role in the pathogenesis of these disorders. Carnosine acts as an antioxidant, antitoxic and neuroprotective agent. The aim of this trial study was to examine the effects of carnosine supplementation on the sleep disorders and severity of autism core symptoms in autistic patients. In this double-blind, randomized clinical trial, 43 autistic patients (31 boys and 12 girls; aged 4 to 16 years) were divided into two groups of carnosine and control that received 500 mg of carnosine and 500 mg of placebo per day for 2 months, respectively. Sleep disorders were measured using Children's Sleep Habits Questionnaires. Gilliam Autism Rating Scale 2 was used to assess the effects of carnosine supplementation on the autism severity. Carnosine supplementation did not change anthropometric indices (p > 0.05) and showed no effect on autism severity (p > 0.05), whereas it significantly reduced sleep duration (p = 0.04), parasomnias (p = 0.02) and total sleep disorders score by 7.59% (p = 0.006) when compared with the control group. The results suggest that carnosine supplementation could be effective in improving sleep disturbances, in particular sleep duration and parasomnias subscales.


Assuntos
Antioxidantes/farmacologia , Transtorno Autístico/tratamento farmacológico , Carnosina/farmacologia , Fármacos Neuroprotetores/farmacologia , Parassonias/tratamento farmacológico , Sono/efeitos dos fármacos , Adolescente , Antioxidantes/uso terapêutico , Transtorno Autístico/complicações , Transtorno Autístico/diagnóstico , Carnosina/uso terapêutico , Criança , Pré-Escolar , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Fármacos Neuroprotetores/uso terapêutico , Parassonias/etiologia , Placebos , Índice de Gravidade de Doença , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...